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a b s t r a c t

This paper presents a model for the structural evolution of low strain detachment folds in which rock is
treated as an incompressible deformable material and its kinematics is governed by the continuity
equation. The model also considers the following boundary conditions: (i) the vertical flux across the
core of the fold is described by a cosine function, (ii) the horizontal flux due to transport along a basal
detachment remains constant with depth, and (iii) the depth of the detachment remains fixed. Upon
finding analytical expressions for the velocity field of this deformation process, a model for the accu-
mulation of growth strata and the degradation of the topography created by folding is then derived.
These processes are approximated by means of the transport-diffusion equation.

Solutions of these two models are in excellent agreement with geometric, and stratigraphic relations
documented in fold-and-thrust belts, and analog experiments. Moreover, the model indicates that fold
growth in this class of structures is a self-affine process. A compilation of detachment folds around the
world indicates that these structures share a common profile. Moreover, fold amplitude and wavelength
of these folds are scaled by different amounts, confirming this result. The stratigraphy obtained with the
growth strata model exhibits the typical thinning, and truncation of timelines toward the core of the
anticline, cross-cutting relations often observed in seismic cross-sections and field data.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Detachment folds (Fig. 1) are one of the three architectural
elements of thrustbelts; the other two being fault-bend folds and
fault-propagation folds (Suppe, 1985; Jamison, 1987; Mitra, 1990;
Suppe and Medwedeff, 1990; Nem�cok et al., 2005). Despite their
importance as the building blocks of contractional terrains, little
progress has been made toward finding analytical solutions
describing the evolution of these structures. Analytical solutions
provide with the exact behavior of the system being modeled in
terms of well-known elementary functions and material parame-
ters. Moreover, characteristic times and lengths can be readily
identified that may reveal fundamental relationships that can be
tested against datasets. Of course only the simplest cases have
closed-form solutions, and even those are highly idealized.

This work is also motivated by the shortcomings in many of the
existing kinematic models of fault-related folding that assume bed
length is conserved, and a stylized geometry in which folds are
straight-limbed and sharp hinged (Suppe,1983; Hardy,1995; Hardy
and Poblet, 1995; Contreras and Suter, 1990, 1997; Zehnder and
All rights reserved.
Allmendinger, 2000; Suppe et al., 2004; Hardy and Connors,
2006). A further criticism is that these models consider fault-
related folding as a steady state process (Poblet et al., 2004). Some
of these assumptions are not physically realistic (e.g., Kwon et al.,
2005) and appear to be unwarranted in the light of field data
(Wiltschko and Chapple, 1977; Vergés et al., 1996; Poblet et al.,
2004), experimental results (Biot, 1961; Storti et al., 1997; Daëron
et al., 2007), and other stratigraphic relationships discussed below.

Within this context kinematic models for low amplitude
detachment folds and associated growth strata are illustrated here.
I selected low amplitude detachment folds because, as it is shown
in Fig. 1, they have simple geometries and growth strata. In this
figure the pre-growth sequences display a smooth symmetrical
shape. Sharp hinges, an idealization often made in the literature
(e.g., Poblet and Hardy, 1995; Poblet et al., 1997), are not evident.
Instead, fold curvature seems to change evenly from a maximum
value at the crest of the structure to a minimum value toward the
flanking synclines. Syntectonic strata also display a strong
symmetry indicating that these structures grow by acquiring
amplitude as shortening is accommodated by folding. All these
features suggest that strain is accommodated in a continuous and
smooth fashion and that periodic functions are best suited tomodel
the evolution of this class of folds.
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Fig. 1. Example of a detachment fold from the Campos and Santos basin, offshore Brazil (Demercian et al., 1993). These structures form by flow of ductile rocks and by parallel
folding of more competent rocks. The stratigraphy of these structures consists of two successions: the pre-growth strata, deposited previous to folding, with a homogenous
thickness, and growth strata synchronous with folding.
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Existing kinematic models of detachment folding often treat
independently axial surface activity, limb rotation, limb length-
ening, uplift rate, as well as the accumulation of syntectonic sedi-
ments (e.g., Hardy and Poblet, 1994; Poblet and McClay, 1996;
Poblet et al., 1997; Wilkerson et al., 2004; Daëron et al., 2007).
Even if mass conservation is imposed, additional geometrical
constrains such as self-similarity (or the lack of) are required to
bring the number of degrees of freedom to a few manageable
parameters. Moreover, velocity fields in these works are derived in
a heuristic manner, not ab initio. The model presented here is of
extreme simplicity. It only considers that mass is conserved,
a stationary Eulerian velocity field, and a constant shortening rate
applied on the limbs of the structure. These conditions severely
restrict the kinematics and time-evolution of folding in the model
and reduce the number of free variables to the rate of tectonic
uplift, the coefficient of mass diffusion, and the initial dimensions
of the fold. In spite of its simplicity, the model reproduces accu-
rately the shape of these folds, their kinematics, and stratigraphic
relations observed in seismic lines and analog experiments.

Following the principles of fluid dynamics and previous work by
Waltham and Hardy (1995), Hardy and Poblet (1995), and Zehnder
and Allmendinger (2000), I start by posing the boundary value
problem describing the kinematics of detachment folding and
growth strata, as well as their solutions, in an Eulerian reference
frame that describes the motion of material points passing through
fixed positions in space. Next, the pathlines of the deformation
process are obtained; results are then expressed in a more natural
Lagrangian reference frame that follows the motion of parcels
through time and space. This shift in reference frame is necessary to
compare the model results with measurements in analog experi-
ments that track the evolution of material markers through time as
deformation progresses. I will refer to positions and velocity
components in the Eulerian reference system using capital letters,
i.e., X, Y, and VX, VY; for the Lagrangian reference frame I will use
lower case letters, i.e., x, y, and vx, vy.

Also following the approach of Hardy and Poblet (1994), Hardy
et al. (1996) and den Bezemer et al. (1999) the accumulation of
growth strata is modeled by means of a boundary value problem in
which the topography generated by detachment folding degrades
by the combined effects of erosion and sedimentation. These
processes are approximated by the transport-diffusion equation
whose expression can also be derived from the principle of mass
conservation. Once the solution of the boundary value problem is
found, the stratigraphic timelines can be obtained by evaluating the
solution for past times; bundles of those lines can be compared
with sedimentary sequences, which are strata bounded by surfaces
that are assumed to represent time lines (e.g., Mial, 1997).
2. The mass conservation equation and other fundamental
relations

The mass conservation equation states that the mass change
inside an arbitrary volume v fixed in space is equal to the mass flux
crossing the bounding surface G of the volume, plus themass added
by sources inside the volume. The equation in its integral form is
expressed as follows:

Z
v

�
v

vt
þ V,V

�
r dv ¼

Z
G

q,n dGþ
Z
v

_4 dv; (1)

where t is the time, r is the mass density, V is the Eulerian velocity,
q is the mass flux, n is the unit vector normal to the bounding
surface G, and _4 represents the mass sources. The differential
operator ðv=vt þ V,VÞ is the Lagrangian derivative; the first term is
the Eulerian (spatial) derivative whereas the second term repre-
sents advection or simply the mass transported by the deforming
medium. Specialized forms of this general equation can be derived
to characterize the kinematics of deformation as well as the
redistribution of mass associated with erosion and sedimentation
and are discussed next.

Two assumptions can bemade to derive a simpler equation than
that of expression (1) governing the kinematics of deformable
bodies. The first one is to assume that rocks do not undergo
chemical reactions or phase changes. A second assumption is to
consider that no expulsion of intra-granular fluids takes place
during the burial of sediments. Under such conditions the system
remains closed (i.e., there are no sources or sinks of mass), and r is
constant. Expression (1) then simplifies to the continuity equation
(Landau and Lifshitz, 1987):

vVX

vX
þ vVY

vY
¼ 0: (2)

Observe that both the identity q ¼ rV and the divergence
theorem were used to obtain this last result.

Now, the pathlines that material points describe as deformation
progresses are the family of curves sðX;Y ; tÞ that satisfy the
following differential equation (Landau and Lifshitz, 1987):

ds
dt

¼ VðsÞ; (3)

with initial conditions sðX;Y ; t ¼ 0Þ ¼ ðx; yÞ, where (x, y) corre-
spond to positions of material points in the initial configuration. It
should be apparent that the deformation function f , the mapping



Fig. 2. Progression of deformation in detachment folds based on observations in the
Jura Mountains, Switzerland, and the Tian Shan Piedmont, Central Asia. The detach-
ment surface lies at the base of the gray basal layer (based on Jamison, 1987; Storti
et al., 1997; Mitra, 2003; Hubert-Ferrari et al., 2007).
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that relates material points in the initial configuration to points in
the deformed state, is simply

f ðx; yÞ ¼ sðx; y; tÞ: (4)

Where rocks are exposed to weathering and transport agents,
a redistribution of mass takes place in the form of erosion and
sedimentation that produces changes in elevation of the landscape.
The equation that describes these phenomena can be derived from
Eq. (1) by expressing the differential volume dv as a column of
height hwith respect to an arbitrary datum and base dA. Eq. (1) can
then be expressed in differential form as (Waltham and Hardy,
1995; Hardy and Poblet, 1995)

r

�
vh
vt

þ VX
vh
vX

þ VY

�
¼ �vq

vX
þ _4: (5)

In this last equation the flux term q now corresponds to
a superficial flux of sediments carried in suspension by streams.
Observations indicate that in transport-limited hillslopes with
angles< 30� the flux of sediments is proportional to the gradient of
the topography q¼ K(vh/vx), where K is the coefficient of mass
transport, a constant that determines the rate of transport and
erodibility of rocks (Culling,1963; Carson and Kirkby,1972). If this is
the case, then the rates of erosion and (local) sedimentation are
proportional to the curvature of the topography, i.e.,

vh
vt

þ VX
vh
vX

þ VY ¼ �k
v2h
vX2 þ _s; (6)

where k¼ K/r is the coefficient of mass diffusion, and _s ¼ _4=r

represents sediments derived from far sources that settle on top of
the topography at a constant sedimentation rate. Eq. (6) describes
the evolution of topography and growth strata in tectonically active
areas and is applicable to landscapes with a constant topographic
profile along strike where colluvium is readily available for trans-
port (Nash, 2005); this equation properly accounts, albeit in
a simplified manner, for the effects of erosion, sedimentation,
advection of topography, and deposition of sediments from distant
sources at the length scale of detachment folding. This is, at larger
length scales erosion, sedimentation, and deformation become
highly non-linear coupled processes (e.g., Cloetingh et al., 1999;
Garcia-Castellanos et al., 2003).

3. Detachment folding model

The model is restricted to a class of fault-related folds
denominated low amplitude detachment folds (Wiltschko and
Chapple, 1977; Mitra, 2003; González-Mieres and Suppe, 2006),
which are structures with a small amount of contraction. That is, I
do not consider folds with a high amplitude/wavelength ratio. For
large deformations, detachment folds become disharmonic and not
all of the deformation is accommodated continuously, which
results in the development of kink bands, faults, and layer-parallel
shearing (Fig. 2; Jamison, 1987; Storti et al., 1997; Mitra, 2003).

In themodels I consider, the fold axis is taken tobe stationary. The
core of the structure, therefore, rises vertically with time and the
surrounding rock deforms around it. If the fold is moving at
a uniform velocity vf, then model results can be recast for such an
inertialmoving frame bymeans of a simpleGalilean transformation.

In order to restrict the model further, I will only consider
detachment folds with a homogeneous stratigraphy. In the case in
which a strong rheological layering is present (e.g., the many classic
detachment folds of the Jura Mountains), the model probably
accurately describes the behavior of the ductile layers as long as
they deform by parallel-to-bed pure shear and not by dislocation
flow (Wiltschko and Chapple, 1977).
The model consists of a rectangular region of thickness H and
half-length L that buckles under the action of compressional
stresses, becoming decoupled from the rocks of the tectonic base-
ment along a shear zone or detachment surface (Fig. 3A). The
following boundary conditions are imposed. (i) Tectonic stresses
contract the tabular region at a constant shortening rate vs. The
mass flux (rvs), therefore, is constant with depth at X¼ L. This is in
agreement with the observations made by González-Mieres and
Suppe (2006) who have shown that there is no layer-parallel
simple shear, i.e., shortening remains constant as a function of
depth. (ii) The upward mass flux normal to the compression forces
at Y¼H follows a cosine function. The mass flux is maximum at the
core of the detachment fold reaching a constant value of rvu, where
vu is the tectonic uplift rate. The wavelength of the fold remains
constant with depth, a condition required to satisfy (i). Well-
imaged detachment folds indicate that some of these structures do
deform in that way (Wiltschko and Chapple, 1977; Epard and
Groshong, 1993; Epard and Groshong, 1995; Hubert-Ferrari et al.,
2007). (iii) The horizontal and vertical components of the velocity
field vanish along the fold axis and the basal detachment, respec-
tively. The derivation of a solution that satisfies these constraints
can be found in Appendix A. The solution is given by the following
expressions:

VX ¼ � vuL
2pH

sinðpX=LÞ � vuX
2H

; (7)

VY ¼ vuY
2H

cosðpX=LÞ þ vuY
2H

: (8)
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Fig. 3. A) Geometry and boundary conditions of the detachment fold model presented
in this paper. It consists of a rectangular region with dimensions L�H. The rate of
shortening on vs on the right side of the region remains constant with depth, whereas
the mass flux at the core of the structure follows a cosine function with a maximum
rate of uplift vu. (B) Sketch of the erosion and sedimentation model. Flux of material
downslope q is proportional to the topographic gradient. The model assumes peri-
odical boundary conditions; as a result, the flux of mass leaving the boundary at right
cancels out with the incoming flux from neighboring folds.
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u

Fig. 4. Geometrical elements of detachment folds. R is the structural relief or ampli-
tude of the fold. Ae is the excess area. This is the area uplifted by folding. u is the linear
shortening.
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To calculate the pathlines that material points describe, as
shortening is accommodated by folding, it is necessary to solve
Eq. (3). Appendix A presents an approximate solution to this
equation valid near the core of the detachment fold. The solution
consists of the following expressions:

sX ¼ s0X expð � tvu=HÞ (9)

sY ¼ s0Y exp
�
tvu
h
cos
�
ps0X=L

�
þ 1

i.
2H
�
: (10)

In the previous equations, one can identify s0X and s0Y with the
material positions of particles (x, y) in the undeformed state at t¼ 0,
and sX and sY with the spatial position (X, Y) of particles in the
deformed state. Then the deformation function for detachment
folding is

X ¼ x expð � tvu=HÞ; (11)

Y ¼ y expðtvu½cosðpx=LÞ þ 1�=2HÞ: (12)

These last two equations describe how shortening is accom-
modated in the model (Eq. (11)) and how fold shape evolves
through time (Eq. (12)). From expression (12) we can derive three
important geometrical parameters of detachment folds used in the
balancing of structural cross-sections: the structural relief R, the
excess area Ae, and the shortening u (Fig. 4). The structural relief is
simply the amplitude of the fold at X¼ 0

R ¼ Y � y ¼ y
�
etvu=H � 1

�
: (13)

Now, the excess area is the integral of the uplifted portion

Ae ¼ 2
ZL
0

y½expðtvu½cosðpx=LÞ þ 1�=2HÞ � 1�dx; (14)

and the derivative of Ae with respect to y is the shortening u or,
equivalently, the change in bed length DL (Epard and Groshong,
1993; González-Mieres and Suppe, 2006):

u ¼ DL ¼ 2
ZL
0

expðtvu½cosðpx=LÞ þ 1�=2HÞdx: (15)

The last two integral equations, however, do not have closed-
form solutions and must be computed numerically.

Two other fundamental parameters that can be obtained from
Eqs. (11) and (12) are the scaling factors lx and ly that describe how
fold shape is rescaled at different times and determinewhether fold
growth is a self-similar process. These are given by the expressions:

lx ¼ e�tvu=H ; (16)

ly ¼ etvu=H : (17)

Finally, the Lagrangian velocity, v, which describes themotion of
material particles, can be found by differentiating the components
of the deformation function (Eqs. (11) and (12)) with respect to
time.

vx ¼ �vu
H

x expð � tvu=HÞ (18)

vy ¼ yvu
2H

½cosðpx=LÞ þ 1�exp
�
tvu
2H

cosðpx=LÞ þ tvu
2H

�
(19)

4. Growth strata model

Growth or syntectonic strata (Suppe et al., 1992) are features of
interest because they contain information about the timing of
deformation events and the rate at which they took place. These
strata also impose stringent constraints on the kinematics of
deformation that models such as the one presented in this paper
must satisfy (Zoetemeijer et al., 1992; Vergés et al., 1996; Poblet
et al., 1997; Suppe et al., 1997; Scharer et al., 2006), and many
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others. For example, syntectonic strata form conformable succes-
sions in the flanking synclines, whereas condensed sections and
progressive unconformities (Riba, 1976) develop at the fold limbs.
Moreover, a strong angular unconformity often develops at the
crest of these structures. Another important feature of these strata
is that their dip increases with age, i.e., older sediments dip more
steeply than do younger sediments.

The idea, then, is to incorporate the effects of erosion and
sedimentation into the model of detachment fold to generate
a synthetic stratigraphy and see if it can reproduce documented
stratigraphic histories in actual folds. This will further validate the
detachment model.

The model uses the transport-diffusion Eq. (6) to capture the
degradation of the detachment fold by erosion and sedimentation
(Fig. 3B). The problem has the following initial and boundary
conditions: (i) initially, the relief of the model is flat and has an
elevation H, and (ii) reflective boundary conditions are imposed on
the synclinal valley and crest of the anticline. This means that the
flux of mass leaving the region across their boundaries cancels out
with a similar incoming flux from adjacent detachment folds
located farther to the right and left (not shown in Fig. 3). Appendix
C presents in detail the derivation of a solution that satisfies these
initial and boundary conditions. The expression that describes the
evolution of topography is as follows:

h ¼ vuL2

kp2

�
1� e�tkp2=2L2

�
cosðpX=LÞ þ tvu

2
þ _st þ H: (20)

Finally, stratigraphic timelines z deposited at past times x, with
respect to the current time t, can be obtained by using the following
transformation:

zðxÞ ¼ hðXðx; t � xÞ; t � xÞ: (21)

5. Results

Fig. 5 shows the development of a detachment fold based on
Eqs. (11) and (12). The parameters used for this particular solution
are those documented by Daëron et al. (2007) for a series folds in
the Tian Shan province in Central Asia: L¼ 10 km, H¼ 2 km, and
vu¼ 0.25 mm/yr. Fig. 5AeC illustrates how the initial rectangular
region shortens and folds as the constituent material particles
travel through the stationary Eulerian velocity field described by
Eqs. (7) and (8). The snapshots correspond to t¼ 1, 2, and 3 Ma.
Fig. 5D is a plot of the deformed state at 3 Ma in which layers have
been included revealing how deformation is accommodated
inside the structure. Finally, Fig. 5E is a plot of the pathlines
described by the material points. These curves are similar to
rectangular hyperbolae with asymptotes given by the coordinate
axis.

The degradation of topography as well as the syntectonic
depositional patterns associated with the growth of a detachment
fold is presented in Fig. 6. Geometrical and kinematical parameters
are the same as in Fig. 5. Two sources of sediments were considered
for this example: sediments derived locally by diffusion of the
topography and sediments derived from distant sources that settle
at a constant rate. The mass diffusivity constant has a value
k¼ 1.5�10e5 m2/s, the far-source sediment supply _s ¼ 0:2 mm=yr,
and timelines are drawn every 330 kyr.

Initially timelines of growth strata lie conformably and are
indistinguishable from the pre-growth strata except for a slight
decrease in thickness toward the fold crest (Fig. 6A). The reason is
that erosion and local sedimentation are proportional to the
curvature of the topography, which is initially flat. As the fold gains
curvature by increasing its structural relief, the crest of the
structure starts to erode. Consequently, the thickness of growth
strata in the model decreases, developing a thinning-upward
pattern similar to the one observed in seismic cross-sections
(Fig. 6B and C). The model, however, clearly shows spurious growth
strata patterns on the limbs of the anticlines flanking the central
fold. The deformation function derived here is only accurate near
the core of the central structure.

Fig. 7 assesses how changes in the coefficient of mass diffusion
and the external sediment supply affect the development of
syntectonic grow strata and the evolution of topography. This
figure presents four different cases in which the mass diffusion
coefficient k is set to 10e4 and 10e6 m2/yr, and the far-source
sediment supply _s is set to 0.5 and 0.1 mm/yr; all other parame-
ters are those of Fig. 5. It can be seen that the coefficient of mass
diffusion controls the amplitude of the eroded topography. A high
mass diffusion coefficient results in flat topography, whereas low
diffusivity results in an emerging detachment fold. By contrast,
sediment supply dictates the development of stratigraphic
patterns in the model, an effect also noticed by Hardy and Poblet
(1995). The solution with a high sediment supply results, initially,
in a covered anticline in which timelines thin upward. Eventually
the thinning-upward is replaced by the development of an onlap
pattern on the limbs of the structure. Solutions with a low sedi-
ment supply are characterized by the development of an erosional
surface over the pre-growth strata at the crest of the structure and
an offlap pattern at the limbs. A more thorough discussion about
the stratigraphic response and the evolution of topography in
terms of these and other parameters is presented in the discus-
sion section below.
6. Discussion

6.1. Initial assumptions and boundary conditions

Two critical assumptions were made during the derivation of
the model. The first one is concerned with rocks having constant
density. Many studies about the structure of active basins show that
density increases with burial depth due to the closing of pore space
as the overburden intensifies. Sediments can loose up to 60% of
their volume by means of this mechanism during the first 3 km
of burial, increasing their density from w2000 kg/m3 to w2600
kg/m3 (Allen and Allen, 2005). Clearly this effect is not small. The
following is a linearized equation that includes the effects of
compaction.

vVX

vX
þ vVY

vY
þ eVY ¼ 0; (22)

where e is the ratio between the density gradient and surficial
density (Vr/r0). Using the values for these parameters discussed
above, e turns out to be a small constant in the order of 10e5 me1.
Therefore, the model presented here should capture reasonably
well the behavior of detachment folding, even if there are consid-
erable changes in density with depth.

The second assumptionmade in the derivation is that the region
deforms by buckling following a cosine function, a deformation
mechanism characteristic of layered composite materials (Biot,
1961). The rheology of the material, however, is not considered
explicitly in the model, for that it is necessary to incorporate the
equation of balance of momentum and the constitutive relationship
of the rocks. In spite of that, it can be demonstrated that the
rheology of the material is implicitly contained in the boundary
conditions. It becomes apparent for the limiting case of small axial
strain, in which case the deformation function converges to the
solution found by Biot (1961) for the buckling of a plate with an
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elasticeplastic composite structure (see Appendix B for further
details).

6.2. Comparison of model predictions with seismic and
experimental observations

The model has several of the features of the constant-area
detachment fold models of Epard and Groshong (1993) and Epard
and Groshong (1995). As in the case of these models, fold growth
is achieved by changes in bed thickness, bed length, and rigid body
rotation, while maintaining the hinges fixed and the depth of the
detachment constant. However, the model derived here is based on
continuous and smooth functions that result in significant
differences. They produce, for example, a folded geometry similar
to a Gaussian distribution curve, but with a shorter tail. This
geometry is governed by the Y-component of the deformation
function (Eq. (12)) in which the cosine function that modulates the
vertical mass flux appears inside an exponential term.

Another difference is that this being a fully kinematic model, it
can be established as to how the fold growth mechanisms evolve
through time (see Appendix A for details and Fig. 8). Initially
changes in bed thickness dominate acting over time as et. As time
increases, changes in bed length by simple shear and rigid body
rotations start to accommodate deformation, becoming the domi-
nant mechanisms for large times as they operate as tet. When
combined they cause fold amplitude to grow exponentially with
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time, which is in agreement with other theoretical models of fold
growth (Biot, 1961) and observations (Jackson and Talbot, 1986;
Vergés et al., 1996; Daëron et al., 2007).

Shortening, on the other hand, has a reciprocal relation to fold
growth decaying exponentially with time. Thus, it becomes
increasingly difficult to compress the region as time increases.
Naturally, the scaling factors have a similar relationship lx¼ 1/ly
(Eqs. (16) and (17)). For this reason, themodel is not self-similar, i.e.,
a fold in a lower state of strain is not a scaled-down version of
another one at a higher state of strain as Fig. 5AeC clearly shows.
Instead, the model falls in the broader category of self-affine
transformations in which an object is transformed unequally in
different directions.

To test some of the previous results I made a cursory compila-
tion of symmetrical low amplitude detachment folds around the
world of different age, sedimentary environment, wavelength L,
structural relief R, thicknessH, and shortening u (Table 1). From this
dataset, well-resolved continuous seismic reflectors within the pre-
growth strata were digitized, normalized by their amplitude and
half wavelengths, and thenwere compared against expression (12).
Fig. 9A shows that the model fits reasonably well the loci of the
normalized horizons regardless of their age, composition, and
sedimentary environment, revealing that low amplitude detach-
ment folds share a common profile. Fig. 9B is a logelog plot of the
scaling factors lx and ly of eight of these detachment folds for
which L, u, R and H can be reliably estimated. The scaling factors
were estimated by means of the relations lx¼ (Le u/2)/L and
ly¼ (Hþ R)/R. Note that these quantities are non-dimensional and
scale invariant. Therefore, any stratum can be used in their calcu-
lations because all parts of the system are scaled the same. The
graph illustrates that an inverse relation (dashed line) fits, in the
manner predicted by the model, the tendency of the data.

Numerous authors have documented the following property of
detachment folds. A plot of the excess area Ae for several strati-
graphic horizons vs. the depth to their undeformed stratigraphic
level often results in a straight line. This is an important property
because it can be used to constrain the depth-to-detachment in
thrustbelts (Epard and Groshong, 1993; Bulmes and Poblet, 1999;
Mitra, 2003; Scharer et al., 2004; González-Mieres and Suppe,
2006). This geometrical relationship is contained in the model
derived here from first principles. In Eq. (14), the y term in the
structural excess area can be factored out of the integral because
integration is carried along the x-axis. Using expression (15), the
structural excess area can then be expressed as Ae¼ yu, a function
that is linear in y, the undeformed stratigraphic level.

In the model, detachment folds grow by the thickening of beds.
As a consequence the structural relief R of internal beds also follows
a relation Rw y as Ae does (Eq. (13)). In this regard, Wiltschko and
Chapple (1977), Epard and Groshong (1993), and Hubert-Ferrari
et al. (2007) documented naturally occurring structures that
behave in this manner. Examples displaying this relationship are
the Anjihad and the Yaken detachment folds located at the



m m

m
m

D

CA

B

Fig. 7. Examples of growth strata patterns generated by the model. The solutions in the upper row are dominated by high erosion rates, whereas the solutions in the lower row are
dominated by uplift. The column on the left corresponds to sediment starved basins; the column on the right corresponds to environments with a high sediment supply. See text for
further details about the parameters used in these solutions.

time

simple shear

and rig
id-

bo
dy

ro
tat

ion

shortening

pure shear

te
ct

on
ic

 tr
an

sp
or

t, 
cr

es
ta

l r
el

ie
f, 

ra
di

an
s 

Fig. 8. Diagram showing how deformation is partitioned through time in the
detachment model presented here. Initially, thickening of beds by pure shear domi-
nates fold growth whereas in later stages growth is achieved predominantly by simple
shear and rigid body rotation. At the same time, shortening decays exponentially with
time.

J. Contreras / Journal of Structural Geology 32 (2010) 566e579 573
piedmont of the Tian Shan Mountains in central Asia (Fig. 10). A
graph of the structural relief vs. the height of the stratigraphic level
above the detachment surface for several reflectors in these
structures shows that a linear regression fits with little dispersion
the trend delineated by the empirical data. Note, however, that the
fit through the Yakeng detachment fold data does not intersect the
origin as expression (12) predicts. A possible explanation for this,
provided by Hubert-Ferrari et al. (2007), is that the fold underwent
additional diapiric flow of salt at its base.

Measurements in sandbox experiments by Bernard et al. (2007)
show that the Lagrangian velocity components of fault-related
folds have relatively simple spatial patterns. They also found that
deformation describes a progression starting with a stage of
detachment tip folding that lasts up to uwH/10; this stage is fol-
lowed by strain localization along a frontal fault that results in
fault-bend folding. Fig. 11 presents a comparison between the
measurements in the analog experiments by Bernard et al. (2007)
and the Lagrangian velocity predicted by Eqs. (18) and (19). The
figure consists of two stacked plots of the velocity components
made along a vertical section that reveal how this physical field
changes with height above the basal detachment. The horizontal
velocity component of the model decreases linearly with distance
toward the core of the fold. It reproduces the trend of the data up to
a kink band that the experiment develops. Beyond the kink band,
the correlation breaks down because the sand particles remain
stationary. As for the vertical velocity component, it can be seen
that the model reproduces the wavelength of the experimental
fold, and the trend in amplitude change along the vertical direction.
The uplift rate increases linearly with elevation above detachment,
a relation that is also built in into the model (see Eq. (19), and
Bernard et al., 2007, Fig. 9). However, fold wavelength in the
experiment does not remain constant; it increases with height
above the detachment surface, a feature that this analytical model
cannot reproduce.
6.3. Topographic evolution and stratal pattern

Previously, it was shown how the mass diffusion coefficient and
external sediment sources of sediments control the development of
growth strata patterns and topography. We will further investigate
what other parameters affect these processes. We will see that the
rate of tectonic uplift and the initial geometry of the folded region
also play a role on this.

The equation describing the topographic evolution (20) can be
expressed in non-dimensional form in the following way (see
Appendix C for details):



Table 1
Compilation of symmetrical, low amplitude detachment folds observed in seismic cross-section in thrust belts around the world.

Location Age of rocks Age of folding Sedimentary
environment

L (km) R (km) H (km) u/2 (km) Reference

Southern North Sea PaleozoiceEarly
Tertiary

Mid-Tertiary ContinentaleMarine 11.5 1.0 0.8 4.5 Hughes and Davison
(1993), Fig. 3

16.4 0.8 0.4 7.6 Glennie (1998),
Fig. 6.20

Tian Shan Piedmont,
Central Asia

Late Mioceneepresent Quaternary Continental 7.69 0.75 3.25 0.69 Daëron et al. (2007),
Fig. 14

7.6 0.5 2.3b 0.6 Hubert-Ferrari et al.
(2007), Fig. 6

Santos and Campos
basin, Offshore Brazil

Cretaceousepresent Albianepresent ContinentaleMarine 20.0 1.2a 0.9a 7.6 Demercian et al.
(1993), Fig. 5

Perdido fold belt,
Gulf of Mexico

Jurassicepresent Eoceneepresent Marine e 2a e e Trudgill et al. (1999),
Fig. 12

Angola continental
slope, SW Africa

e e e 3.5 0.95 1.8 0.5 Shaw et al. (2005),
p. 38

Zagros fold belt,
Middle East

PaleozoiceCenozoic Cenozoic Carbonate platform e 0.3a 8.2a e Sherkati et al. (2005),
Fig. 5

Wyoming thrust
belt, North America

e e e 4.85 0.53 2.8 0.35 Groshong and Epard
(1993), Fig. 10

Appalachian fold
belt, North America

SillurianeDevonian PennsylvanianePermian Carbonate platform 10.78 0.79 0.12 0.08 Wiltschko and Chapple
(1977), Fig. 3

L is half the wavelength of the fold, R is the structural relief of a well-imaged reflector within the pre-growth strata, H is the height above the detachment surface of the
reflector in its undeformed position, and u is the tectonic transport along the basal detachment.

a Based on a seismic wave propagation velocity of 2000 m/s.
b Average thickness.
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h ¼ gPe
�
1� e�t=2sd

�
cosðX=[Þ þ t

st
þ t
ss
; (23)

whereh is thenormalized change in topographic relief,g is the aspect
ratio of the region, [¼ L/p is the characteristicwavelength of the fold,
Pe is the Péclet number, a non-dimensional quantity given by the
ratio between themassflux due to tectonic uplift and the diffusion of
mass by erosion and sedimentation, sd is the characteristic time at
which diffusion takes place, and st and ss are characteristic times
associatedwith tectonic uplift and sedimentation, respectively. From
this last equation, it can be seen that for t in excess of 3sd, the term
e�t=2sd becomes negligible and the topography reaches a steady state
with a constant amplitude dictated by gPe (Fig. 12)
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Fig. 9. A) Comparison of the fold geometry predicted by the model (gray line) with the ge
factors for eight of the detachment folds listed in Table 1. Dotted line corresponds to the b
h ¼ gPe cosðX=[Þ þ t
st
þ t
ss
: (24)

Thus, low values of gPe will result in a flat topography as in
solutions A and C in Fig. 7, whereas high values of gPe will produce
an emerging detachment fold as in solutions B and C in Fig. 7. From
Eq. (24) it can also be demonstrated that for sse1> gPe/2sd¼ vu/2H
sedimentation predominates over erosion and uplift, which will
result in a covered anticline (see Appendix C for further details).
Note, however, that from Eq. (12) the structural relief grows with
time as et. If sedimentation rate remains constant through time, as
in the model presented here, then uplift will eventually surpass
accumulation of sediments resulting in a thinning-upward pattern
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ometry of actual detachment folds listed in Table 1 (dots). Logelog plot of the scaling
est fit function of the form y¼ A/x, where A¼ 1.25.
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in timelines and the development of a strong unconformity at the
crest of the fold.

I selected a detachment fold from the North Sea salt pillows
to test the detachment folding and stratal growth patterns
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predicted by the model (Fig. 13A). The rocks involved in the
deformation consist of a basal layer of evaporites of Permian age,
overlain by a thick sequence of competent clastic continental
rocks and marine carbonates of Mesozoic age. During the early
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Fig. 12. Sketch showing the geometrical meaning of the various non-dimensional
quantities that appear in the solution of the growth strata model: Dh is the change in
topography due to folding, erosion, and sedimentation; g is the aspect ratio of the
region; Pe is the Péclet Number, the ratio between the flux due to tectonic uplift and
the mass flux by erosion and sedimentation; ss is a characteristic time in which
sedimentation takes place. Further details are provided in the text and Fig. 3.
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Tertiary this sequence was folded by a small phase of localized
inversion that gave rise to detachment folds throughout the area,
disrupting the sedimentation of a sequence of predominantly
clastic sediments.

This detachment fold contains units with contrasting mechan-
ical properties and its development cannot be simulated with the
model because it assumes a homogenous lithology. To deal with
this complexity, I considered a two-layer model in which the
ductile basal unit (purple unit in Fig. 13) deforms by parallel-to-bed
pure shear, whereas the competent units (cyan unit) deform by
similar folding (vertical simple shear). Given the low amplitude of
the fold, the later mode of folding is a good approximation to the
way in which competent units deform by concentric parallel
folding.
Fig. 13. A) Seismic cross-section of a detachment fold in the southern North Sea. Blue area co
continental and marine rocks; orange sequence corresponds to syntectonic strata of late Tert
structure illustrated in (A). The model uses the following parameters: Pe¼ 2�10e3, vu/k¼
The geometrical and non-dimensional parameters needed to
simulate the deformation and accumulation of growth strata of
this detachment fold can be estimated directly from the seismic
cross-section (see also the first row of values in Table 1); it can be
seen that gPe is a small number in the order of 0.01 or less because
the structure lacks relief; L¼ 11.5 km, and H¼ 0.8 km; that places
g¼ 4.5. A simple algebraic manipulation involving these quantities
constrains some of their ratios: Pe¼ 2�10e3, vu/k¼ 6�10e7 m,
and _s=k < 6� 10�7 m. In other words, the rate of erosion signifi-
cantly exceeded those of sedimentation and uplift. Fig. 13B shows
the simulated structure and stratigraphy of the North Sea
detachment fold. The model reproduces the first-order features of
the geometry and stratigraphic relations observed in the fold. Note
how the model captures accurately the fold shape in which
synclines are broader than the central anticline, a feature that
a simple periodic function (i.e., sine or cosine functions) cannot
recreate. Also note the development of a progressive unconformity
at the fold limbs and crest of the central anticline. However, arti-
fices in the seismic imaging make a detailed comparison between
model and data difficult. This is especially true at the limbs of the
structure, where multiple reflections obscure stratigraphic
relations.
7. Conclusions

I have presented a simple model for the evolution of low
amplitude detachment folding that satisfies the conservation of
mass principle. Unlike previous models that have highly idealized
geometries in which folds are straight-limbed and sharp hinged,
the model presented here is smooth and strain is accommodated
continuously. The geometry predicted by the model is close to that
of a Gaussian distribution function in which fold wavelength
remains constant with depth, resulting in similar folding.

This paper also presented a model for growth strata built upon
the detachment folding model. It is important to reproduce these
stratigraphic features because they impose stringent constraints
on the kinematics of deformation. The model uses the transport-
diffusion equation to simulate the effects of erosion,
rresponds to a ductile layer of salt; green sequences correspond to competent Mesozoic
iary age. (B) Simulation of the evolution of detachment folding and growth strata for the
6�10e7 m, and _s=k ¼ 4� 10�7 m, and g¼ 4.5. See text for further details.
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sedimentation, and deposition of sediments from distant sources.
These processes can be characterized in terms of non-dimensional
quantities and characteristic times. These include the Péclet
number, the aspect ratio of the region, and the characteristic
times associated with the rate of tectonic uplift and sedimenta-
tion. The models display the following geometrical and kinematic
properties:

1 Folding is a highly unstable process in which structural relief
grows exponentially with time when the contraction rate is
constant.

2 The core of the fold grows by parallel-to-bed pure shear that
results in changes in thickness and longitude in beds across the
fold.

3 The structural relief and excess area increase in linear
proportion with elevation above the basal detachment.

4 Folding is a self-affine process. As deformation progresses the
resulting fold is not a scaled version of itself, instead, the shape
is strained by different scaling factors along the horizontal and
vertical direction. The factors have a reciprocal relation to
conserve mass in the fold.

5 Growth strata exhibit progressive unconformities and form
fanning patterns of sedimentary sequences on the limbs of the
fold.

6 The dip of syntectonic strata increases with age, i.e., older
sediments dip more steeply than do younger sediments.

All these features are in agreement with geometric, and strati-
graphic relations documented in fold-and-thrust belts, and analog
experiments.
Acknowledgments

I am grateful to my colleagues of CICESE’s applied seismology
group for helpful comments received during the development of
the ideas presented in this paper. I am also grateful to Juán García-
Abdeslem, Max Suter, Greg Hirth, and two anonymous reviewers
whose comments substantially improved the paper. José de Jesús
Mojarro-Bermúdez and Luis Carlos Gradilla Martínez provided
technical support to the author. This work was funded by a grant
from the Mexican Council of Science (CONACyT grant no. 60647)
and by CICESE (project no. 644116).
Appendix A. Detachment folding model

The boundary value problem (BVP) used here to describe
detachment folding is the following:

vVX

vX
þ vVY

vY
¼ 0; (A.1)

VXð0;YÞ ¼ 0; (A.2)

VXðL;YÞ ¼ vs; (A.3)

VY ðX;0Þ ¼ 0; (A.4)

VY ðL; YÞ ¼ 0; (A.5)

VY ðX;HÞ ¼ vu
2

cosðpX=LÞ þ vu
2
: (A.6)

One strategy to solve this homogeneous partial differential
equation with non-homogenous boundary conditions (BC) is to
assume that vY can be expressed as the product of two independent
functions of X and Y

VY ¼ aðXÞbðYÞ; (A.7)

and from Eq. (A.1), VX can be expressed as

vVX

vX
¼ �aðXÞdbðYÞ

dY
: (A.8)

The next step is to calculate the integral of this last expression to
find the flux leaving an arbitrary region (0, X)� (0, Y)

ZY
0

ZX
0

vVX

vX
dY dX ¼

ZY
0

ZX
0

aðXÞdbY
dY

dY dX: (A.9)

Using BC (A.2), this integral simplifies to the following
expression:

ZY
0

VX dY ¼ AðXÞbðYÞ; (A.10)

where AðXÞ ¼ R
aðXÞ dX. By evaluating this expression at X¼ L and

using BC (A.3)

vsY ¼ AðLÞbðYÞ: (A.11)

It can be seen that b(Y) must be a linear function of Y. The same
reasoning can be used to infer the form of a(X) using BC (A.6);
clearly, a(X)¼ vu/2 cos(pX/L)þ vu/2. Combining those two results,
the vertical component of the velocity field is

VY ¼ vuY
2H

cosðpX=LÞ þ vuY
2H

: (A.12)

Finally, from Eqs. (A.12) and (A.8) it is a straightforward proce-
dure to derive

VX ¼ � Lvu
2pH

sinðpX=LÞ � vuX
2H

; (A.13)

Now, the pathlines are the family of curves sðtÞ that satisfy the
following system of differential equations:

s0XðtÞ ¼ VXðsY ðtÞ; tÞ; (A.14)

s0Y ðtÞ ¼ VY ðsYðtÞ; tÞ: (A.15)

Upon substitution of Eqs. (A.13) and (A.12) in (A.14) and (A.15)

s0XðtÞ ¼ � Lvu
2pH

sinðpsX=LÞ �
vusX
2H

; (A.16)

s0Y ðtÞ ¼ vusY
2H

cosðpX=LÞ þ sY
2H

: (A.17)

Rearranging terms

dsX
L
p sinðpsX=LÞ þ sX

¼ � vu
2H

dt; (A.18)

dsY
sY

¼
�
vu
2H

cosðpX=LÞ þ 1
2H

�
dt: (A.19)

Expression (A.18) is quite cumbersome and probably does not
have a closed-form solution. An approximate solution can be found
by performing a truncated Taylor’s expansion to the first term of the
sine function, in which case the left-hand side of expression (A.18)
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reduces to the more manageable form dsX/2sX. The approximate
solution is given by the expressions:

sX ¼ s0Xe
�tvu=H ; (A.20)

sY ¼ s0Ye
tvu½cosðpX=LÞþ1�=2H : (A.21)

s0X and s0Y correspond with the material positions of particles (x, y)
in the undeformed state at t¼ 0, and sX and sY with the spatial
positions (X, Y) of particles in the deformed state.

X ¼ xe�tvu=H; (A.22)

Y ¼ yetvu½cosðpx=LÞþ1�=2H : (A.23)

These two last equations are the deformation function f of the
detachment folding process. From them the infinitesimal strain
tensor, E ¼ 1

2ðVf þ Vf TÞ, and the infinitesimal rotation tensor,
W ¼ 1

2ðVf � Vf TÞ, can be obtained.
E ¼
 

e�tvu=H pvuy
4HL sin

�
px
L

�
tetvu½cosðpx=LÞþ1�=2H

pvuy
4HL sin

�
px
L

�
tetvu½cosðpx=LÞþ1�=2H etvu½cosðpx=LÞþ1�=2H

!
; (A.24)

W ¼
 

0 �pvuy
4HL sin

�
px
L

�
tetvu½cosðpx=LÞþ1�=2H

pvuy
4HL sin

�
px
L

�
tetvu½cosðpx=LÞþ1�=2H 0

!
: (A.25)
Therefore, the deformation process is accomplished by
contractions and dilations (diagonal terms in E), simple shear (off-
diagonal terms in E) and rigid body rotations given by W.

Appendix B. Convergence to Biot’s solution to the problem of
the buckling of an elastic plate embedded in a viscous fluid

The solution of Biot (1961) to this classical problem is given by

u ¼ u0 cosð2px=lÞet=s; (B.1)

whereu is thedeflectionof theplate,l is thewavelengthof the folding,
and s is a characteristic time that controls how fast the buckling
instability grows. These two parameters depend on the elastic
parameters of the plate, its thickness, and viscosity of thefluid. For the
limiting case of small axial strains the displacement field is given by

ux ¼ X � xz0 (B.2)

uy ¼ Y � y ¼ yevut cosðpX=LÞ=2Hetvu=2H � y (B.3)

Note that the exponential term of the vertical deformation
component is split into two parts: one containing a spatial term
only and another one containing a temporal term only. If the spatial
term is small then it can be replaced by Taylor’s expansion linear-
izing that term. Then Eq. (B.3) reduces to

uzuy ¼ yvut
2H

cosðpx=LÞetvu=2H � y: (B.4)

By setting yvut/2H¼u0, L/2¼ l, and 2H/vu¼ s expression (B.1) is
recovered.

Appendix C. Erosion and sedimentation model

The transport-diffusion equation (6) is used here to model
erosion and sedimentation synchronous with detachment folding.
However, to solve this equation, further simplifications are
required. Firstly, I will assume that the product of the topographic
gradient with the horizontal velocity component VXvh/vX is negli-
gible, given the low amplitude of the detachment fold and the slow
deformation rate involved in the problem. Secondly, VY is evaluated
in Y¼H to describe the tectonic uplift rate at the top of the region.
Thirdly, reflective boundary conditions are imposed at the ends of
the region; therefore, the net flux ofmass leaving it as zero. Another
way to see these last boundary conditions is that the detachment
fold being modeled is part of a group of congruent folds and the
outbound flux of mass cancels out by an inbound flux from adjacent
folds. The initial conditions and boundary value problem that
describe the degradation of topography is

vh
vt

¼ �k
v2h
vX2 �

vu
2

cosðpX=LÞ � vu=2þ _s; (C.1)

h ¼ H; t ¼ 0; (C.2)
vh
vX

¼ 0; X ¼ 0; L: (C.3)

The solution to this problem can be found in numerous text-
books e.g., Farlow (1993)

h ¼ vuL2

kp2

�
1� e�tkp2=2L2

�
cosðpX=LÞ þ tvu

2
þ _st þ H: (C.4)

This expression can be rearranged in the following way

h� H
H

¼ L
pH

vuL
kp

�
1� e�tkp2=2L2

�
cosðpX=LÞ þ vu

2H
t þ _s

H
t: (C.5)

Now, when the following characteristic length [¼ L/p and
characteristic times st¼ 2H/vu, ss ¼ H=_s, and sd¼ [2/k are intro-
duced, Eq. (C.5) can expressed as

h� H
H

¼ [

H
vu[

k

�
1� e�t=2sd

�
cosðX=[Þ þ t

st
þ t
ss
: (C.6)

The left-hand side of this equation is the normalized change in
topographic relief, whereas the ratio [/H on the right-hand side of
the equation can be considered as the aspect ratio of the region;
furthermore the non-dimensional quantity vu[/k is the Péclet
number. By denoting these three non-dimensional quantities as h,
g, and Pe, the previous expression simplifies to

h ¼ gPe
�
1� e�t=2sd

�
cosðX=[Þ þ t

st
þ t
ss
: (C.7)

By differentiating with respect to time one can obtain the rate at
which erosion and sedimentation proceed

vh

vt
¼ gPe

2sd
e�t=2sd cosðX=[Þ þ 1

st
þ 1
ss
: (C.8)

From this result, it can be appreciated that if

1
ss

>
gPe
2sd

; (C.9)
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then sedimentation predominates over erosion. Finally, by
substituting the values of Pe¼ vu[/k, and sd¼ [2/k, we obtain

1
ss

>
vu
2H

: (C.10)
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